
DApp Developers and Smart Contract Auditors

SMART CONTRACT SECURITY AUDIT

of

ZAPIT CONTRACTS

Smart Contract Audit of Zapit

June 10th, 2024 | v. 1.0

TABLE OF CONTENTS

AUDIT INTRODUCTION 3

AUDIT DOCUMENT 4

AUDIT SCOPE 4

● Initial Review Scope

● Final Review Scope

AUDIT SUMMARY 8

AUDITMETHODOLOGY 9

SYSTEMOVERVIEW 13

FINDINGS 14

STATIC ANALYSIS REPORT 15

MANUAL REVIEW 18

UNIT TEST REPORT 21

DISCLAIMER 24

ABOUT SECUREDAPP 27

Smart Contract Audit of Zapit | Page 2

AUDIT INTRODUCTION

Auditing Firm SecureDApp Auditors

Audit Architecture SecureDApp Auditing Standard

Language Solidity

Client Firm Zapit

Website Zapit

Twitter https://x.com/zapit_io

Linkedin https://www.linkedin.com/company/zapit-io

Report Date July 16th, 2024

About Zapit

Zapit is a comprehensive, self-custodial cryptocurrency platform designed to revolutionize

peer-to-peer payments and decentralized services. As a universal payment app, Zapit provides

seamless access to Web 3.0, enabling users to engage with decentralized applications, execute

transactions, store tokens, and trade—all within a single, integrated platform.

.

Smart Contract Audit of Zapit | Page 3

https://zapit.io/
https://x.com/zapit_io
https://www.linkedin.com/company/zapit-io/

AUDIT DOCUMENT

Name Smart Contract Code Review and Security Analysis Report for Zapit

Approved By Himanshu Gautam| CTO at SecureDApp

Type Decentralized P2P service with non-custodial escrow system

Platform EVM

Language Solidity

Changelog 16.07.2024 – Final Review

AUDIT SCOPE

The scope of this report is to audit the smart contract source code of Zapit P2P contracts.

Our client provided us with four facets of smart contracts of diamond proxy pattern.

● AdminFacet.sol

● EscrowFacet.sol

● EscrowFacetERC20.sol

● SignatureFacet.sol

All the contracts were written in Solidity and based on the Diamond Proxy Standard (EIP-2535). Smart

contracts are to be deployed on multiple EVM compatible networks. AdminFacet implements

configurations with respect to fee, currencies allowed, arbitrator and pausable features. EscrowFacet

implements functionalities for P2P service of native chain tokens while EscrowFacetERC20

implements P2P functions for ERC20 tokens. SignatureFacet implements functions to verify signed

messages based on EIP 712 standard.

After initial research, we agreed to perform the following tests and analyses as part of our

well-rounded audit:

● Smart contract behavioral consistency analysis

● Test coverage analysis

● Penetration testing: checking against our database of vulnerabilities and simulating manual

attacks against the contracts

● Static analysis

● Manual code review and evaluation of code quality

● Analysis of GAS usage

● Contract analysis with regards to the host network
Smart Contract Audit of Zapit | Page 4

Initial Review Scope

Repository https://github.com/zapit-io/p2p-evmContract/tree/audit

Commit Hash 5e04062aff23fcb561993ca8914478401710616b

Functional Requirements Partial documentation provided. README.md

Technical Requirements Partial documentation provided. README.md

Contracts Addresses
-

Contracts EscrowFacetERC20.sol
EscrowFacet.sol
AdminFacet.sol
SignatureFacet.sol

Final Review Scope

Repository https://github.com/zapit-io/p2p-evmContract/tree/audit

Commit Hash e249fc03bb4e721165606021cd1db885c8ef3322

Functional Requirements Partial documentation provided. README.md

Technical Requirements Partial documentation provided. README.md

Contracts Addresses
-

Contracts EscrowFacetERC20.sol
EscrowFacet.sol
AdminFacet.sol
SignatureFacet.sol

Smart Contract Audit of Zapit | Page 5

https://github.com/zapit-io/p2p-evmContract/tree/audit
https://github.com/zapit-io/p2p-evmContract/tree/audit

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit and can lead to asset loss or
data manipulations.

High High-level vulnerabilities are difficult to exploit; however, they also have a significant impact
on smart contract execution, e.g., public access to crucial functions.

Medium Medium-level vulnerabilities are important to fix; however, they cannot lead to asset loss or
data manipulations.

Low Low-level vulnerabilities are mostly related to outdated, unused, etc. code snippets that
cannot have a significant impact on execution.

Informational Issue listed to improve understanding, readability and quality of code

All statuses which are identified in the audit report are categorized here for the reader to review:

Status Type Definition

Open Risks are open.

Acknowledged Risks are acknowledged, but not fixed.

Resolved Risks are acknowledged and fixed.

Smart Contract Audit of Zapit | Page 6

AUDIT SUMMARY

The SecureDApp team has performed a line-by-line manual analysis and automated review of smart

contracts. Smart contracts were analyzed mainly for common contract vulnerabilities, exploits, and

manipulation hacks. According to the audit:

Status Critical High Medium Low Informative

Open 0 0 0 0 0

Acknowledged 1 0 0 0 0

Resolved 4 3 3 0 0

Smart Contract Audit of Zapit | Page 7

AUDIT METHODOLOGY

SecureDApp scans contracts and reviews codes for common vulnerabilities, exploits, hacks and back- doors.
Mentioned are the steps used by SecureDApp to audit smart contracts:

a. Smart contract source code reviewal:
i. Review of the specifications, sources, and instructions provided to SecureDApp to make sure

we understand the audit scope, intended business behavior, overall architecture, and project’s
goal.

ii. Manual review of code, which is the process of reading source code line-by-line to identify
potential vulnerabilities.

b. Test coverage analysis: (Unit testing)
i. Test coverage analysis is the process of determining whether the test cases are covering the

code and howmuch code is exercised when we run those test cases.
c. Static analysis:

i. Run a suite of vulnerability detectors to find security concerns in smart contracts with di�ferent
impact levels.

d. Symbolically executed tests: (SMTChecker testing) (Taint analysis)
i. Symbolic execution is analyzing a program to determine what inputs cause each part of a

program to execute.
ii. Check for security vulnerabilities using static and dynamic analysis

e. Property based analysis (Fuzz tests)(Invariant testing)
i. Run the execution �lowmultiple times by generating random sequences of calls to the contract.
ii. Asserts that all the invariants hold true for all scenarios.

f. Best practices review, which is a review of the smart contracts to improve e�ficiency, e�fectiveness,
clarify, maintainability, security, and control based on the established industry and academic practices,
recommendations, and research.

g. Specific, itemized, actionable recommendations to help you take steps to secure your smart contracts.

Automated 5S frameworks used to assess the smart contract vulnerabilities
● Consensys Tools
● SWC Registry
● Solidity Coverage
● Open Zeppelin Code Analyzer
● Solidity Shield Scan

Smart Contract Audit of Zapit | Page 8

We have audited the smart contracts for commonly known and more specific vulnerabilities.

Below is the list of smart contract tests, vulnerabilities, exploits, and hacks:

ID Description Status

EEA 3.3 Oracle Manipulation N/A

EEA 3.3 Bad Randomness - VRF N/A

S60 Assembly Usage Passed

S59 Dangerous usage of block.timestamp Passed

EEA 3.7 Front-Running Attacks N/A

EEA 3.7 Back-Running Attacks N/A

EEA 3.7 Sandwich Attacks N/A

DASP Gas Griefing Attacks Passed

DASP Force Feeding Passed

SCSVS V2 Access Control Passed

DASP Short Address Attack Passed

DASP Checks Effects Interactions Passed

EEA 4.1 No Self-destruct Passed

SCSVS V14 Decentralized Finance Checks Passed

Smart Contract Audit of Zapit | Page 9

https://consensys.github.io/smart-contract-best-practices/attacks/oracle-manipulation/
https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
https://consensys.github.io/smart-contract-best-practices/attacks/frontrunning/
https://entethalliance.github.io/eta-registry/security-levels-spec.html#sec-mev-considerations
https://entethalliance.github.io/eta-registry/security-levels-spec.html#sec-mev-considerations
https://consensys.github.io/smart-contract-best-practices/attacks/griefing/
https://consensys.github.io/smart-contract-best-practices/attacks/force-feeding/
https://dasp.co/#item-2
https://dasp.co/#item-9
https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html
https://entethalliance.github.io/eta-registry/security-levels-spec.html#sec-levels-one
https://github.com/securing/SCSVS/blob/master/1.2/0x23-V14-Decentralized-Finance.md

Slither Tests Checks for ERC's conformance Passed

Coverage Unit tests with 100% coverage -

Gas Reporter Gas usage & limitations Passed

Echidna Tests Malicious input handling Passed

SWC-101 Integer Overflow and Underflow

Passed

SWC-102 Outdated Compiler Version

Passed

SWC-103 Floating Pragma

Passed

SWC-104 Unchecked Call Return Value

Passed

SWC-105 Unprotected Ether Withdrawal

Passed

SWC-106 Unprotected SELF-DESTRUCT Instruction

Passed

SWC-107 Re-entrancy

Passed

SWC-108 State Variable Default Visibility

Passed

SWC-109 Uninitialized Storage Pointer

Passed

SWC-110 Assert Violation

Passed

SWC-111 Use of Deprecated Solidity Functions

Passed

SWC-112 Delegate Call to Untrusted Callee

Passed

Smart Contract Audit of Zapit | Page 10

https://github.com/crytic/slither/wiki/ERC-Conformance
https://www.npmjs.com/package/solidity-coverage
https://www.npmjs.com/package/hardhat-gas-reporter
https://github.com/crytic/echidna

SWC-113 DoS with Failed Call

Passed

SWC-114 Transaction Order Dependence

Passed

SWC-115 Authorization through tx.origin

Passed

SWC-116 Block values as a proxy for time

Passed

SWC-117 Signature Malleability

Passed

SWC-134 Message call with the hardcoded gas amount Passed

SWC-135 Code With No Effects (Irrelevant/Dead Code) Informational

SWC-136/SCSVS V3 Unencrypted Private Data On-Chain Passed

Smart Contract Audit of Zapit | Page 11

SYSTEM OVERVIEW

Zapit provides users with P2P Buy & Sell of assets without the involvement of a central authority.

Keeping the trades confidential and safe using an open source non-custodial escrow system. System

architect uses four core facets contracts.

AdminFacet contract manages the administrative configurations of the smart contract system.

It includes functions for setting and adjusting transaction fees, defining allowed currencies,

configuring the arbitrator for dispute resolution, and implementing pausable features for

maintenance or emergencies.

EscrowFacet contract facilitates peer-to-peer (P2P) transactions involving native chain tokens

by providing a secure mechanism for holding funds in escrow during transactions, managing the

deposit, release, and refund of these tokens. Similarly, the EscrowFacetERC20 contract handles P2P

transactions specifically for ERC20 tokens, offering equivalent escrow services tailored to ERC20

tokens.

Finally, the SignatureFacet contract handles the verification of signed messages based on the

EIP-712 standard, ensuring the integrity and authenticity of the signatures used in the system. The

scope of the audit is the above four facets contracts.

Privileged roles

1. Contract Owner Role : OwnershipFacet

a. Manage contract upgradability

b. Manage Admin functions:

i. Pause Contracts

ii. setWhitelistedCurrencies

iii. setArbitrator

iv. setFees and setFeeAddress

2. AdminFacet - Arbitrator Role:

a. claimDisputedOrder

Risks

1. The impact of the owner role being compromised would have a huge impact on the protocol.

2. Centralization risk is the most common cause of cryptography asset loss.

3. Compromising the Owner Role may lead to all user’s asset loss.

Smart Contract Audit of Zapit | Page 12

FINDINGS

Centralization Risk

Centralization risk is the most common cause of dapp’s hacks. When a smart contract has an active

contract ownership, the risk related to centralization is elevated. There are some well-intended

reasons to be an active contract owner, such as:

● Contract owners can be granted the power to pause() or lock() the contract in case of an

external attack.

● Contract owners can use functions like, include(), and exclude() to add or remove wallets from

fees, swap checks, and transaction limits. This is useful to run a presale, and to list on an

exchange.

Authorizing a full centralized power to a single body can be dangerous. Unfortunately, centralization

related risks are higher than common smart contract vulnerabilities. Centralization of ownership

creates a risk of rug pull scams, where owners cash out tokens in such quantities that they become

valueless. Most important question to ask here is, how to mitigate centralization risk? Here’s

SecureDApp’s recommendation to lower the risks related to centralization hacks:

● Smart contract owner’s private key must be carefully secured to avoid any potential hack.

● Smart contract ownership should be shared by multi-signature (multi-sig) wallets.

● Smart contract ownership can be locked in a contract, user voting, or community DAO can be

introduced to unlock the ownership.

Zapit Centralization Status

● Zapit smart contract has Contract Ownership Role.

Smart Contract Audit of Zapit | Page 13

STATIC ANALYSIS REPORT

| Symbol | Meaning |

|:--------:|-----------|

| 🛑 | Function can modify state |

| 💵 | Function is payable |

| Contract | Type | Bases |

| **EscrowFacet** | Implementation | Modifiers, SignatureFacet |||

| **EscrowFacetERC20** | Implementation | Modifiers, SignatureFacet |||

| **SignatureFacet** | Implementation | |||

| **AdminFacet** | Implementation | Modifiers |||

Function Name | **Visibility** | **Mutability** | **Modifiers** |

| **EscrowFacet** | Implementation | Modifiers, SignatureFacet |||

|| createEscrowNative | External❗ | 💵 | nonReentrant nonContract onlyWhitelistedCurrencies |

|| claimDisputedOrder | External❗ |🛑 | nonReentrant nonContract |

|| executeOrder | External❗ |🛑 | nonReentrant nonContract |

|| buyerCancel | External❗ |🛑 | nonReentrant nonContract |

||||||

| **EscrowFacetERC20** | Implementation | Modifiers, SignatureFacet |||

|| createEscrowERC20 | External❗ | 💵 | nonReentrant nonContract onlyWhitelistedCurrencies |

|| claimDisputedOrderERC20 | External❗ |🛑 | nonReentrant nonContract |

|| executeOrderERC20 | External❗ |🛑 | nonReentrant nonContract |

Smart Contract Audit of Zapit | Page 14

|| buyerCancelERC20 | External❗ |🛑 | nonReentrant nonContract |

||||||

| **SignatureFacet** | Implementation | |||

|| getMessageHash | Public❗ | |NO❗ |

|| getEthSignedMessageHash | Public❗ | |NO❗ |

|| recoverSigner | Public❗ | |NO❗ |

|| splitSignature | Public❗ | |NO❗ |

||||||

| **AdminFacet** | Implementation | Modifiers |||

|| pause | External❗ |🛑 | whenNotPaused onlyOwner |

|| unpause | External❗ |🛑 | whenPaused onlyOwner |

|| setWhitelistedCurrencies | External❗ |🛑 | onlyOwner |

|| setArbitrator | External❗ |🛑 | onlyOwner |

|| setFees | Public❗ |🛑 | onlyOwner |

|| setFeeAddress | External❗ |🛑 | onlyOwner |

|| paused | External❗ | |NO❗ |

|| getWhitelistedCurrencies | External❗ | |NO❗ |

|| getArbitrator | External❗ | |NO❗ |

|| getFees | External❗ | |NO❗ |

|| getFeeAddress | External❗ | |NO❗ |

|| getEscrow | External❗ | |NO❗ |

Smart Contract Audit of Zapit | Page 15

TRANSACTION GAS CHART

Smart Contract Audit of Zapit | Page 16

MANUAL REVIEW

Identifier Definition Severity

CEN-01 Centralization privileges of Zapit Contract Owner Critical

Centralized privileges are listed below:

● Contract Owner Role : OwnershipFacet

○ Control contract upgradability

○ Manage Admin functions:

■ Pause Contracts

■ setWhitelistedCurrencies

■ setArbitrator

■ setFees and setFeeAddress

RECOMMENDATION

Use Openzepplin Access Control framework instead or Ownable module to avoid single point of
failure. Usage of Multi-Sig wallet for authorisation is recommended. Please refer to CENTRALIZED
PRIVILEGES for a detailed understanding.

Status: Resolved

Smart Contract Audit of Zapit | Page 17

Identifier Definition Severity

CEN-02 Protecting the Initialization Function in DiamondInit Critical

DiamondInit contract includes an external init function that currently lacks access controls. This

function initializes various storage variables and sets up supported interfaces, making it crucial for the

contract's proper operation. Without access control, any external entity can call this function,

potentially leading to malicious reinitialization or manipulation of the contract's state. This

vulnerability can have severe consequences, including unauthorized fee adjustments, changing the

arbitrator, or triggering unintended contract behaviors.

RECOMMENDATION

Safeguard the init function from unauthorized access, implement an access control mechanism.

Status: Resolved

Smart Contract Audit of Zapit | Page 18

Identifier Definition Severity

CEN-03 Use of proxy and Diamond upgradeable pattern Critical

Contract upgradeability allows privileged roles to change current contract implementation.

RECOMMENDATION

Test and validate the current contract thoroughly before deployment. Future contract upgradeability

negatively elevates centralization risk.

Status: Acknowledged

Smart Contract Audit of Zapit | Page 19

Identifier Definition Severity

CEN-04 Ensuring Proper Functionality of the Pausable Mechanism Critical

In EscrowFacetERC20 and EscrowFacet contracts, the Pausable mechanism is not effectively halting all

platform activities. This inadequacy can lead to vulnerabilities where the platform operations

continue even when they should be paused, potentially exposing the platform to risks or misuse

during these periods.

RECOMMENDATION

To ensure the Pausable mechanism properly halts all platform activities, you need to integrate the

whenNotPaused modifier into all critical functions that should be stopped when the contract is

paused.

Status: Resolved

Smart Contract Audit of Zapit | Page 20

Identifier Definition Severity

CEN-05 Mismatch in Fee Calculation Precision Between Off-chain and
On-chain Calculations

Critical

The contract calculates seller fees based on a precise formula involving _value and

ds.escrowFeeBP, ensuring fees are deducted correctly. However, off-chain fee calculation in the

client-side code uses a simplified calculation which may lead to precision mismatches.

RECOMMENDATION

Consistent Calculation Methods: Ensure that fee calculations in both off-chain and on-chain

environments use the same precise arithmetic methods to avoid discrepancies. Try to isolate fee

calculation function in contract and use that to calculate even for off chain use cases.

Status: Resolved

Smart Contract Audit of Zapit | Page 21

Identifier Definition Severity

HGH-01 Improving Ether Transfer Methods in EscrowFacet Contract High

The EscrowFacet contract currently uses the outdated transfer function for Ether transfers, which can

fail due to gas limitations. The recommended approach is to use the call method for greater flexibility

and reliability.

RECOMMENDATION

Replace all instances of transfer with the call method to improve the security and reliability of Ether

transfers. Ref: https://solidity-by-example.org/sending-ether/

Status: Resolved

Smart Contract Audit of Zapit | Page 22

https://solidity-by-example.org/sending-ether/

Identifier Definition Severity

HGH-02 Enhancing Security with SafeERC20 Library in
EscrowFacetERC20 Contract

High

The EscrowFacetERC20 contract currently performs unchecked ERC20 token transfers, which can lead

to vulnerabilities such as failed transactions not being properly handled. Using the OpenZeppelin

SafeERC20 library ensures that all token transfers are executed safely, handling potential errors

gracefully and increasing overall contract security.

RECOMMENDATION

Replace all instances of unchecked ERC20 token transfers with the SafeERC20 library to ensure safe

and reliable token transactions.

Status: Resolved

Smart Contract Audit of Zapit | Page 23

Identifier Definition Severity

HGH-03 Missing Ether Withdrawal Function to EscrowFacetERC20
Contract

High

The EscrowFacetERC20 contract has payable functions but lacks a mechanism to withdraw Ether,

which can lead to Ether being locked in the contract indefinitely. This is a critical issue as it can result

in the loss of funds if Ether is accidentally sent to the contract. To prevent this, a withdrawal function

should be implemented, allowing the contract owner to retrieve any Ether stored in the contract or

remove the payable modifier.

RECOMMENDATION

Add a function to withdraw Ether from the contract to ensure that any Ether received can be

recovered.

Status: Resolved

Smart Contract Audit of Zapit | Page 24

Identifier Definition Severity

MED-01 Enhancing Test Coverage for Upgradability and Pausable
Features

Medium

The current test suite lacks unit and end-to-end test cases for the upgradability functionality and the

pausable features of the contract. This gap in test coverage can result in undetected issues or

vulnerabilities, potentially compromising the reliability and security of the contract.

RECOMMENDATION

Develop unit tests to validate the upgradability functionality and end-to-end tests to verify the

pausability features.

Status: Resolved

Smart Contract Audit of Zapit | Page 25

Identifier Definition Severity

MED-02 Mitigating Risk with Multi-Signature Framework for Arbitrator
Role

Medium

The current contract employs a single wallet arbitrator, which poses a risk if the private key associated

with the arbitrator account is compromised.

RECOMMENDATION

Integrate a multi-signature framework for contract arbitration to enhance security and mitigate the

risk of private key exposure.

Status: Resolved

Smart Contract Audit of Zapit | Page 26

Identifier Definition Severity

MED-03 Enhancing Contract Stability with Fixed Pragma Directive Medium

The contract currently utilizes a pragma version that may introduce breaking changes or unexpected

behavior due to its recentness.

RECOMMENDATION

To ensure stability and reliability, it is advisable to use a fixed pragma directive, such as version 0.8.18,

which has undergone extensive testing and is less likely to encounter compatibility issues.

Status: Resolved

Smart Contract Audit of Zapit | Page 27

UNIT TEST REPORT

Zapit Unit Test Cases

const diamond = '0x5FbDB2315678afecb367f032d93F642f64180aa3'

const diamondInit = '0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512'

Token deployed: 0xa513E6E4b8f2a923D98304ec87F64353C4D5C853

✔ UPGRADABILITY: Check all facets within diamond

✔ UPGRADABILITY: Remove a AdminContract from diamond

✔ UPGRADABILITY: Check all facets within diamond

✔ UPGRADABILITY: Fail to call methods from admin contract

✔ UPGRADABILITY: Add a AdminContract to diamond

✔ UPGRADABILITY: Check all facets within diamond

✔ UPGRADABILITY: Fail to add AdminContract to diamond again

✔ UPGRADABILITY: Non owner cannot remove AdminContract from diamond

✔ ADMIN: [OWNERSHIP] Should fetch and verify the ownership of the contract

✔ ADMIN: [OWNERSHIP] Should transfer ownership to account[1] i.e arbitrator

✔ ADMIN: [OWNERSHIP] Should transfer ownership back to account[0] i.e deployer

✔ ADMIN: [ARBITER] Should verify the arbiter

✔ ADMIN: [FEE ADDRESS] Should fetch the default market fee address

✔ ADMIN: [FEE ADDRESS] SET+GET Should set and fetch the default market fee address

✔ ADMIN: [Fees] Should fetch the market fee set

✔ ADMIN: [PAUSABLE] Market should not be paused initially

✔ ADMIN: [ROLE] Check deployer hasRole

✔ ADMIN: [ROLE] secondaryDeployer hasRole must be false

✔ ADMIN: [ROLE] Grant Role to secondaryDeployer

✔ ADMIN: [ROLE] secondaryDeployer hasRole must be true

✔ ADMIN: [ROLE] secondaryDeployer must be able to pause and unpause the market

✔ ADMIN: [ROLE] Revert Unauthorized Grant Role invocation from non admin account

✔ ADMIN: [ROLE] Revoke Role

✔ ADMIN: [ROLE] secondaryDeployer hasRole must be false

✔ ADMIN: [ROLE] Assign role to secondaryDeployer and it must renounce the Role

✔ CORE: [DimaondInit] Should not be able to execute as it can only be called by the owner

✔ CORE: [DimaondInit] 0th storage slot must be owner for diamind and address(0) for diamond init

✔ ADMIN [PAUSABLE] Should pause the market

✔ PAUSABLE: Fail to create order due to paused contract

✔ PAUSABLE: Should unpause the market

✔WHITELIST: Fail to create order as currency is not whitelisted

✔WHITELIST: Whitelist base currency

✔ EscrowFacet: Create and Complete Native currency trade

✔ EscrowFacet: Create and Cancel order

✔ EscrowFacet: Create and Claim dispute (Buyer)

✔ EscrowFacet: Create and Claim dispute (Seller)

✔ EscrowFacetERC20Contract: Create and Complete Native currency trade

✔ EscrowFacet: Create and Cancel order

✔ EscrowFacet: Create and Claim dispute (Seller)

✔ EscrowFacet: Create and Claim dispute (Buyer)

19 passing (913ms)

Smart Contract Audit of Zapit | Page 28

DISCLAIMER

SecureDApp Auditors provides the easy-to-understand audit of solidity source codes (commonly

known as smart contracts).

The smart contract for this particular audit was analyzed for common contract vulnerabilities, and

centralization exploits. This audit report makes no statements or warranties on the security of the

code. This audit report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the smart contract analyzed, nor do they provide any indication of the client’s business,

business model or legal compliance. This audit report does not extend to the compiler layer, any other

areas beyond the programming language, or other programming aspects that could present security

risks. Cryptographic tokens are emergent technologies, they carry high levels of technical risks and

uncertainty. You agree that your access and/or use, including but not limited to any services, reports,

and materials, will be at your sole risk on an as-is, where-is, and as-available basis. This audit report

could include false positives, false negatives, and other unpredictable results.

CONFIDENTIALITY

This report is subject to the terms and conditions (including without limitations, description of

services, confidentiality, disclaimer and limitation of liability) outlined in the scope of the audit

provided to the client. This report should not be transmitted, disclosed, referred to, or relied upon by

any individual for any purpose without SecureDApp’s prior written consent.

NO FINANCIAL ADVICE

This audit report does not indicate the endorsement of any particular project or team, nor guarantees

its security. No third party should rely on the reports in any way, including to make any decisions to

buy or sell a product, service or any other asset. The information provided in this report does not

constitute investment advice, financial advice, trading advice, or any other sort of advice and you

should not treat any of the report’s content as such. This audit report should not be used in any way

to make decisions around investment or involvement. This report in no way provides investment

advice, nor should be leveraged as investment advice of any sort. for avoidance of doubt, services,

including any associated audit reports or materials, shall not be considered or relied upon as any form

of financial, tax, legal, regulatory, or other advice.

TECHNICAL DISCLAIMER

Smart Contract Audit of Zapit | Page 29

All services, audit reports, smart contract audits, other materials, or any products or results of the use

thereof are provided “as is” and “as available” and with all faults and defects without warranty of any

kind. To the maximum extent permitted under applicable law, SecureDApp hereby disclaims all

warranties, whether expressed, implied, statutory, or otherwise with respect to services, audit report,

or other materials. Without limiting the foregoing, SecureDApp specifically disclaims all implied

warranties of merchantability, fitness for a particular purpose, title and non-infringement, and all

warranties arising from the course of dealing, usage, or trade practice. Without limiting the foregoing,

SecureDApp makes no warranty of any kind that all services, audit reports, smart contract audits, or

other materials, or any products or results of the use thereof, will meet the client’s or any other

individual’s requirements, achieve any intended result, be compatible or work with any software,

system, or other services, or be secure, accurate, complete, free of harmful code, or error-free.

TIMELINESS OF CONTENT

The content contained in this audit report is subject to change without any prior notice. SecureDApp

does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access

using the internet or other means, and assumes no obligation to update any information following the

publication.

LINKS TO OTHER WEBSITES

This audit report provides, through hypertext or other computer links, access to websites and social

accounts operated by individuals other than SecureDApp. Such hyperlinks are provided for your

reference and convenience only and are the exclusive responsibility of such websites’ and social

accounts’ owners. You agree that SecureDApp is not responsible for the content or operation of such

websites and social accounts and that SecureDApp shall have no liability to you or any other person or

entity for the use of third-party websites and social accounts. You are solely responsible for

determining the extent to which you may use any content at any other websites and social accounts

to which you link from the report.

Smart Contract Audit of Zapit | Page 30

ABOUT SECUREDAPP

SecureDApp Auditor provides intelligent blockchain solutions. SecureDapp is developing an ecosystem

that is seamless and responsive. Some of our services: Blockchain Security, Token Launchpad, NFT

Marketplace, etc. SecureDapp’s mission is to interconnect multiple services like Blockchain Security,

DeFi, Gaming, and Marketplace under one ecosystem that is seamless, multi-chain compatible,

scalable, secure, fast, responsive, and easy to use.

SecureDApp is built by a decentralized team of UI experts, contributors, engineers, and enthusiasts

from all over the world. Our team currently consists of 6+ core team members, and 10+ casual

contributors. SecureDApp provides manual, static, and automatic smart contract analysis, to ensure

that the project is checked against known attacks and potential vulnerabilities.

To learn more, visit : https://securedapp.in/

To view our audit portfolio, visit : github.securedapp.in

To book an audit, message : securedapp.telegram

Smart Contract Audit of Zapit | Page 31

https://securedapp.in/
https://github.com/securedapp-github
https://t.me/SecureDapp

Securedapp.in

Securedapp_Linkedin

Securedapp_Telegram

Smart Contract Audit of Zapit | Page 32

https://securedapp.in/
https://www.linkedin.com/company/securedapp/
https://t.me/SecureDapp

